Low order approximations in deconvolution and regression with errors in variables

نویسندگان

  • Raymond J. Carroll
  • Peter Hall
چکیده

We suggest two new methods, which are applicable to both deconvolution and regression with errors in explanatory variables, for nonparametric inference.The two approaches involve kernel or orthogonal series methods. They are based on defining a low order approximation to the problem at hand, and proceed by constructing relatively accurate estimators of that quantity rather than attempting to estimate the true target functions consistently. Of course, both techniques could be employed to construct consistent estimators, but in many contexts of importance (e.g. those where the errors are Gaussian) consistency is, from a practical viewpoint, an unattainable goal. We rephrase the problem in a form where an explicit, interpretable, low order approximation is available.The information that we require about the error distribution (the error-in-variables distribution, in the case of regression) is only in the form of low order moments and so is readily obtainable by a rudimentary analysis of indirect measurements of errors, e.g. through repeated measurements. In particular, we do not need to estimate a function, such as a characteristic function, which expresses detailed properties of the error distribution.This feature of our methods, coupled with the fact that all our estimators are explicitly defined in terms of readily computable averages, means that the methods are particularly economical in computing time.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design-adaptive Local Polynomial Estimator for the Errors-in-Variables Problem

Local polynomial estimators are popular techniques for nonparametric regression estimation and have received great attention in the literature. Their simplest version, the local constant estimator, can be easily extended to the errors-in-variables context by exploiting its similarity with the deconvolution kernel density estimator. The generalization of the higher order versions of the estimato...

متن کامل

Nonparametric Function Estimation Involving Errors-in-variables

We examine the effect of errors in covariates in rionparametric function estimation. These functions include densities, regressions and conditional quantiles. To estimate these functions, we use the idea of deconvoluting kernels in conjunction with the ordinary kernel methods. We also discuss a new class of function estimators based on local polynomials. oAbbreviated title. Error-in-variable re...

متن کامل

On Deconvolution with Repeated Measurements

In a large class of statistical inverse problems it is necessary to suppose that the transformation that is inverted is known. Although, in many applications, it is unrealistic to make this assumption, the problem is often insoluble without it. However, if additional data are available then it is possible to estimate consistently the unknown error density. Data are seldom available directly on ...

متن کامل

On Deconvolution with Repeated Measurements by Aurore Delaigle,

In a large class of statistical inverse problems it is necessary to suppose that the transformation that is inverted is known. Although, in many applications, it is unrealistic to make this assumption, the problem is often insoluble without it. However, if additional data are available, then it is possible to estimate consistently the unknown error density. Data are seldom available directly on...

متن کامل

On Local Linear Estimation in Nonparametric Errors-in-variables Models

Local linear methods are applied to a nonparametric regression model with normal errors in the variables and uniform distribution of the variables. The local neighborhood is determined with help of deconvolution kernels. Two different linear estimation method are used: the naive estimator and the total least squares estimator. Both local linear estimators are consistent. But only the local naiv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003